B.Sc. (Honours) Examination, 2019
 Semester-III (CBCS)

 Statistics

 Statistics
 Course : CC-6
 (Statistical Inference)

Time : $\mathbf{3}$ Hours
Full Marks : 40

Questions are of value as indicated in the margin.

Answer any four of the following questions

1. a) State the desirable properties of an estimator. When do we call a statistic is sufficient for an unknown parameter?
b) Find sufficient statistic for the parameter θ of $\mathrm{U}(0, \theta)$ distribution. 5
2. a) Define a consistent estimator. Show that if T_{n} is a consistent estimator of θ and $\gamma(\theta)$ is a continuous function of θ, then $\gamma\left(\mathrm{T}_{\mathrm{n}}\right)$ is a consistent estimator of $\gamma(\theta)$.
b) If $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ are random observations on a Bernoulli variate X taking the value 1 with probability p and the value 0 with probability (1-p) then show that $\frac{\Sigma x_{i}}{n}\left(1-\frac{\Sigma x_{i}}{n}\right)$ is a consistent estimator of $\mathrm{p}(1-\mathrm{p})$.
3. a) Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ be random sample from the distribution with mass function

$$
f(x, \theta)=\theta^{x}(1-\theta)^{1-x}, x=0,1 ; 0<\theta<1
$$

Examine whether $T=\sum_{i=1}^{n} X_{i}$ is complete for this distribution or not.
b) Show that in case of Pareto distribution

$$
f(x, \alpha)=\frac{\alpha}{x^{\alpha+1}}, x \geq 1, \alpha>0
$$

The method of moments fails if $0<\alpha<1$. Derive the method of moment estimator when $\alpha>1$.
4. a) Obtain the maximum likelihood estimator of θ in

$$
f(x, \theta)=(1+\theta) x^{\theta} ; 0<x<1
$$

based on a sample of size n.
b) Develop the sequential probability Ratio Test (SPRT) of strength (α, β) to test the hypothesis

$$
\begin{align*}
& \begin{array}{l}
\mathrm{H}_{0}: \theta=\theta_{0} \\
\text { against } \\
\mathrm{H}_{1}: \theta=\theta_{1} \\
\text { for the distribution }
\end{array} \\
& \quad f(x, \theta)=\theta^{x}(1-\theta)^{1-x}, \quad \begin{array}{c}
x=0,1 \\
0<\theta<1
\end{array}
\end{align*}
$$

5. a) Bring out the difference between a randomized test and a non-randomized test. Explain how the decision based on a randomized test can be taken in the discrete setup.
b) Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ be a random sample from $N\left(\theta, \sigma^{2}\right) \sigma^{2}$ is not specified. Derive size α likelihood ratio test for testing

$$
\begin{align*}
& \mathrm{H}_{0}: \theta=\theta_{0} \\
& \text { against } \\
& \mathrm{H}_{1}: \theta=\theta_{0} \tag{6}
\end{align*}
$$

6. a) If $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ is a random sample from the distribution with density function

$$
f(x, \theta)= \begin{cases}\theta x^{\theta-1} & \theta<x<1 \\ 0 & \text { Otherwise }\end{cases}
$$

where $0<\theta<\infty$. Show that the MP test of level α for testing $\mathrm{H}_{0}: \theta=1$ against H_{1} : $\theta=2$ is given by the critical region.

$$
\left\{\underset{\sim}{x} \left\lvert\, \prod_{i=1}^{n} x_{i}>e^{-\frac{1}{2} x_{i-\alpha, 2 n}^{2}}\right.\right\}
$$

where $\chi_{1-\alpha, 2 n}^{2}$ is the lower α-point of the χ^{2} distribution with 2 n degrees of freedom. 5
b) It is required to test H_{0} against H_{1} from a single observation x , where H_{0} is the hypothesis that the pdf is

$$
f(x)=\frac{1}{\sqrt{2 n}} e^{-\frac{1}{2} x^{2}},-\infty<x<\infty
$$

and H_{1} is the hypothesis that the pdf is

$$
f(x)=\frac{2}{\sqrt{\frac{1}{4}}} e^{-x^{4}},-\infty<x<\infty
$$

Obtain the most powerful (MP) test with level of significance α in this case.

