B.Sc. (Honours) Examination, 2019 Semester-III (CBCS) Statistics Course : CC-6 (Statistical Inference)

Time : 3 Hours

Full Marks: 40

5

4

4

Questions are of value as indicated in the margin. Answer **any four** of the following questions

- 1. a) State the desirable properties of an estimator. When do we call a statistic is sufficient for an unknown parameter? 5
 - b) Find sufficient statistic for the parameter θ of U(0, θ) distribution.
- 2. a) Define a consistent estimator. Show that if T_n is a consistent estimator of θ and $\gamma(\theta)$ is a continuous function of θ , then $\gamma(T_n)$ is a consistent estimator of $\gamma(\theta)$.

b) If $x_1, x_2, ..., x_n$ are random observations on a Bernoulli variate X taking the value 1 with probability p and the value 0 with probability (1-p) then show that $\frac{\sum x_i}{n} \left(1 - \frac{\sum x_i}{n}\right)$ is a

consistent estimator of p(1-p).

3. a) Let x_1, x_2, \dots, x_n be random sample from the distribution with mass function

$$f(x,\theta) = \theta^{x}(1-\theta)^{1-x}, x = 0, 1; 0 < \theta < 1$$

Examine whether $T = \sum_{i=1}^{n} X_i$ is complete for this distribution or not. 5

b) Show that in case of Pareto distribution

$$f(x,\alpha) = \frac{\alpha}{x^{\alpha+1}}, x \ge 1, \alpha > 0$$

The method of moments fails if $0 < \alpha < 1$. Derive the method of moment estimator when $\alpha > 1$.

4. a) Obtain the maximum likelihood estimator of θ in

$$f(x,\theta) = (1+\theta)x^{\theta}; 0 < x < 1$$

based on a sample of size *n*.

b) Develop the sequential probability Ratio Test (SPRT) of strength (α,β) to test the hypothesis

$$H_0: \theta = \theta_0$$

against
$$H_1: \theta = \theta_1$$

for the distribution

$$f(x,\theta) = \theta^{x} (1-\theta)^{1-x}, \quad \begin{array}{l} x = 0, 1\\ 0 < \theta < 1 \end{array}$$

 5. a) Bring out the difference between a randomized test and a non-randomized test.
Explain how the decision based on a randomized test can be taken in the discrete setup.

P.T.O.

b) Let $x_1, x_2, ..., x_n$ be a random sample from $N(\theta, \sigma^2) \sigma^2$ is not specified. Derive size α likelihood ratio test for testing

$$H_0: \theta = \theta_0$$

against
$$H_1: \theta = \theta_0$$

6. a) If x_1, x_2, \dots, x_n is a random sample from the distribution with density function

$$f(x,\theta) = \begin{cases} \theta x^{\theta - 1} & \theta < x < 1 \\ 0 & \text{Otherwise} \end{cases}$$

where $0 < \theta < \infty$. Show that the MP test of level α for testing H₀ : $\theta = 1$ against H₁ : $\theta = 2$ is given by the critical region.

$$\left\{ \underbrace{x}_{i} \mid \prod_{i=1}^{n} x_{i} > e^{-\frac{1}{2}\chi_{1-\alpha,2n}^{2}} \right\}$$

where $\chi^2_{1-\alpha,2n}$ is the lower α -point of the χ^2 distribution with 2n degrees of freedom.5

b) It is required to test H_0 against H_1 from a single observation x, where H_0 is the hypothesis that the pdf is

$$f(x) = \frac{1}{\sqrt{2n}} e^{-\frac{1}{2}x^2}, -\infty < x < \infty$$

and H_1 is the hypothesis that the pdf is

$$f(x) = \frac{2}{\left|\frac{1}{4}e^{-x^4}, -\infty < x < \infty\right|}$$

Obtain the most powerful (MP) test with level of significance α in this case.

6

5